Correlates of immune protection following cutaneous immunization with an attenuated Burkholderia pseudomallei vaccine.

نویسندگان

  • Ediane B Silva
  • Andrew Goodyear
  • Marjorie D Sutherland
  • Nicole L Podnecky
  • Mercedes Gonzalez-Juarrero
  • Herbert P Schweizer
  • Steven W Dow
چکیده

Infections with the Gram-negative bacterium Burkholderia pseudomallei (melioidosis) are associated with high mortality, and there is currently no approved vaccine to prevent the development of melioidosis in humans. Infected patients also do not develop protective immunity to reinfection, and some individuals will develop chronic, subclinical infections with B. pseudomallei. At present, our understanding of what constitutes effective protective immunity against B. pseudomallei infection remains incomplete. Therefore, we conducted a study to elucidate immune correlates of vaccine-induced protective immunity against acute B. pseudomallei infection. BALB/c and C57BL/6 mice were immunized subcutaneously with a highly attenuated, Select Agent-excluded purM deletion mutant of B. pseudomallei (strain Bp82) and then subjected to intranasal challenge with virulent B. pseudomallei strain 1026b. Immunization with Bp82 generated significant protection from challenge with B. pseudomallei, and protection was associated with a significant reduction in bacterial burden in lungs, liver, and spleen of immunized mice. Humoral immunity was critically important for vaccine-induced protection, as mice lacking B cells were not protected by immunization and serum from Bp82-vaccinated mice could transfer partial protection to nonvaccinated animals. In contrast, vaccine-induced protective immunity was found to be independent of both CD4 and CD8 T cells. Tracking studies demonstrated uptake of the Bp82 vaccine strain predominately by neutrophils in vaccine-draining lymph nodes and by smaller numbers of dendritic cells (DC) and monocytes. We concluded that protection following cutaneous immunization with a live attenuated Burkholderia vaccine strain was dependent primarily on generation of effective humoral immune responses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of Burkholderia mallei and pseudomallei vaccines

Burkholderia mallei and Burkholderia pseudomallei are Gram-negative bacteria that cause glanders and melioidosis, respectively. Inhalational infection with either organism can result in severe and rapidly fatal pneumonia. Inoculation by the oral and cutaneous routes can also produce infection. Chronic infection may develop after recovery from acute infection with both agents, and control of inf...

متن کامل

A Burkholderia pseudomallei Outer Membrane Vesicle Vaccine Provides Cross Protection against Inhalational Glanders in Mice and Non-Human Primates

Burkholderia mallei is a Gram-negative, non-motile, facultative intracellular bacillus and the causative agent of glanders, a highly contagious zoonotic disease. B. mallei is naturally resistant to multiple antibiotics and there is concern for its potential use as a bioweapon, making the development of a vaccine against B. mallei of critical importance. We have previously demonstrated that immu...

متن کامل

Humoral and cell-mediated adaptive immune responses are required for protection against Burkholderia pseudomallei challenge and bacterial clearance postinfection.

Burkholderia pseudomallei, the causative agent of melioidosis, is a gram-negative bacillus endemic to areas of southeast Asia and northern Australia. Presently, there is no licensed vaccine for B. pseudomallei and the organism is refractive to antibiotic therapy. The bacterium is known to survive and multiply inside both phagocytic and nonphagocytic host cells and may be able to spread directly...

متن کامل

Protection against experimental melioidosis following immunization with live Burkholderia thailandensis expressing a manno-heptose capsule.

Melioidosis is a severe infectious disease caused by Burkholderia pseudomallei. It is highly resistant to antibiotic treatment, and there is currently no licensed vaccine. Burkholderia thailandensis is a close relative of Burkholderia pseudomallei but is essentially avirulent in mammals. In this report, we detail the protective efficacy of immunization with live B. thailandensis E555, a strain ...

متن کامل

Protection against heterologous Burkholderia pseudomallei strains by dendritic cell immunization.

Burkholderia pseudomallei, the causative agent of melioidosis, is a gram-negative bacterium which can cause either chronic infections or acute lethal sepsis in infected individuals. The disease is endemic in Southeast Asia and northern Australia, but little is known about the mechanisms of protective immunity to the bacterium. In this study, we have developed a procedure to utilize dendritic ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Infection and immunity

دوره 81 12  شماره 

صفحات  -

تاریخ انتشار 2013